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To date, the complexities of polishing has made is difficult to 
scientifically design, optimize a process for a given material  

Workpiece surface interactions 

Phenomena affecting Surface Figure 

Polishing interface interactions 

This is why finishing 
historically has been largely an 

art than a scientific method 
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Polishing was conducted using  the Convergent Polishing 
Method (ceria or silica slurry on various glasses using a 
polyurathane pad) 

CISR0 polisher CISR1 polisher 

These polishing systems offer great control over process parameters (temperature, 
humidity, PSD, rogue particles, pad treatment etc.) & diagnostics allowing for very 

controlled, repeatable polishing experiments  
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Our measurements show that Ce penetration is not due to 
diffusion & K penetration is consistent with diffusion 

1Measured by SIMS (note Si 2x1022 atom/cm3) 

[Ce] profile on polished fused silica 
surface as fn of polishing velocity 

dh/dt 

[K] profile on polished fused silica 
surface as fn of polishing velocity 

K penetration decreases with increase in 
removal rate; consistent with diffusion 

Ce penetration increases with increase in 
removal rate; suggestive of a surface 
reactivity mechanism; Ce is the active 
component in material removal during 

polishing 

dh/dt 
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[Ce]s increases with polishing removal rate & is weakly 
dependent on other polishing parameters 

[Ce] of polished surface layer for 
variety of polishing conditions 

Correlation between [Ce]s and 
removal rate (dh/dt) 
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T. Suratwala et. al., J. Am. Cer. Soc 98(8) (2015) 2396 
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The penetration of Ce into silica surface during polishing is 
proposed to be a competition of hydrolysis reactions 

Condensation 

Silica Hydrolysis 

Ceria Hydrolysis 

≡Si-OH + HO-Ce ≡    ≡ Si-O-Ce ≡  +  H2O 

≡Si-O-Si-O-Ce-O-Ce ≡  +  H2O   ≡ Si-OH + HO-Si-O-Ce-O-Ce ≡  

≡Si-O-Si-O-Ce-O-Ce ≡  +  H2O   ≡ Si-O-Si-O-Ce-OH   +  HO-Ce ≡  

r =Ceria Hydrolysis rate/ Silica Hydrolysis rate 

Mechanism 
1) Removal rate increases 
2) Interface temperature increases  
3) Arrhenius increase to r 
4) Greater Ce surface deposition 
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Nanoscratching at ultralow loads offers exploring mechanical 
properties of Bielby layer and particle removal function 

1 This study (2014); 2Thongoom J. Mat. Sci 40 (2005);3Miller, Optics Letters 35(16) (2006); 4Lawn, 
Fracture of Brittle Solids (1993);5Suratwala, JNCS 354 (2008) 

Nanoindentation 

Ultra-low load 
Nanoscratching 

Load vs Corresponding Depth on Fused Silica 

Typical loads 
during Polishing 
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Using a stiff AFM tip, nanoscratching has proven a viable 
method to explore the mechanical properties of Beilby layer 
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Nanoscratching Method 
 
• Standard AFM tip (Si; 

0.1-1 N/m; ~10 nm 
radius) replaced with   
Stiff AFM tip 
(Diamond; 42 N/m; 
150 nm radius) 
 

• Nanoscratches 
created at loads          
0 – 170 µN 

SEM of a AFM  
diamond tip 
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Fused silica and BK7 show little load dependence on permanent 
deformation; changes in Bielby layer of fused silica influences 
depth 

Cross-section of nanoscratches at  
various loads on various substrates 
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Annealing induced relaxation1 supports that nanoscratches on 
fused silica are largely due to densification 

Nanoscratches 
before & after annealing 

0.5 N Vickers indentation  
before & after annealing 

1 Using technique described by Yoshida .et. al., J. Mater. Res., Vol. 20, No. 12, Dec 2005  
Annealing temp 0.9 Tg 
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The removal volume was determined from multi-pass 
nanoscratching to account densification effects 

30 nm 

LHG-8 phosphate glass: scratches at 110 µN 

N. Shen et. al., J. Am. Cer. Soc (2016) 1-8 

Passes:    1 1 1 5 5 10 10 
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Determined removal function for single 
particle on various glasses 

A detailed description of the removal function has been 
determined for various glasses aiding to the prediction of 
roughness 

• Removal occurs over two 
regimes during polishing 
(molecular and plastic) 
 

• Fused silica and BK7 have 
similar removal functions 
 

• Removal function for 
phosphate glass is higher 
 

• Combining removal 
function with load/particle 
distribution allows for 
predicting roughness 
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Key polishing variables were measured to test and validate the 
EHMG polishing model 
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Key polishing variables: 
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Pad topology during polishing strongly influences 
removal rate 
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• Tall pad asperities (100’s µm) are removed with diamond conditioning pad treatment 
• Removal rate increased from 0.08 µm/hr to 2.10 µm/hr; 26x increase 

0.08 µm/hr 0.31 µm/hr 

0.82 µm/hr 2.10 µm/hr 
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Slurry’s PSD* strongly correlates with workpiece roughness and 
removal rate 

 Measured PSD of ceria slurries 

Stab.Hast. 

Full scale= 
-4 nm to 4 nm 
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 AFM images of fused silica workpieces 
after polishing with different ceria slurries 

The tail end of each slurry follows a 
single exponential distribution 
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The slope of the slurry’s PSD 
quantitatively scales with the rms 
roughness 
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T. Suratwala et. al., J. Am. Cer. Soc 97(1) (2014) 81 
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EHMG (Esemble Hertzian Multi-Gap) polishing model accounts 
for both slurry PSD & pad topology to determine RR and 
roughness 

EHMG Model Setup Stress on each asperity (σi) 
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Interface gap (gi) for each asperity is 
determined by asperity stress (σi) and particle 
size distribution F(r) over whole workpiece 

Load Balance on each asperity 
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Load/particle distribution calculated using EHMG model, 
combined with measured removal function, gives the removal 
amount for each slurry particle 
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This can be now used to calculate both removal rate and roughness during polishing 
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EHMG model compared with experiments expands our insight to 
the diverse factors affecting material removal rate 

Measured removal rate & EHMG model Comparison 

( )mmmppprrLAt adfadfVfffN
dt
dh 22 +≈

• Widening PSD 
increases load/particle 
& fraction of removal 
by plastic removal (fp) 
 

• Increasing slurry conc 
increases active 
particles density (Ntfr) 
and fraction of load 
carried by particle (fL) 
 

• Increasing pad flatness 
increases fraction of 
pad area making 
contact (fA) 
 

• Change in glass type 
change removal depth 
by plastic removal (dp) 
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EHMG model also simultaneously simulates trends in observed 
AFM roughness over a variety of polishing parameters 
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E=10 kcal/mole 
ro=80 

25 

Measured vs Calculated [Ce]s using 
temperature dependent hydrolysis ratio 

𝐶𝐶𝑜𝑜 =
𝑆𝑆𝑝𝑝
𝑑𝑑
𝑟𝑟(𝑇𝑇) =

𝑆𝑆𝑝𝑝
𝑑𝑑
𝑟𝑟𝑜𝑜𝑒𝑒 

−𝐸𝐸
𝑅𝑅 𝑇𝑇 𝑑𝑑𝑑

𝑑𝑑𝑑𝑑  

• Proposed Mechanism 
 

 - As removal rate increase, there is 
an increase interface temperature 

 
 - The resulting temperature rise 

causes a Arrhenius change to 
hydrolysis ratio (r) of Si-O and Ce-O 

 
 - Increase in r results in more Ce 

deposition to the surface 
 

• Best fit activation energy (E) of 10 
kcal/mole is consistent with 
literature values of Si-O-Si 
hydrolysis* 

*Cypryk, Organometallics 21 (2002) 2165 

The ceria concentration variation with polishing rate can be 
predicted using temperature dependent hydrolysis ratio (r) 
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Aggressive DC treatment also flattened the pad over longer 
spatial scale lengths 
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EHMG (Esemble Hertzian Multi-Gap) polishing model accounts 
for both slurry PSD & pad topology to determine RR and 
roughness 

• Key Inputs: Slurry PSD & Pad Topology 
 

• Using pad height histograms:  
• Pad asperities compress leading to 

single value gap of pad (gp) based 
on load balance 

• Fraction of pad area making contact 
is calculated 
 

• Each asperity compresses by height (hi) 
resulting in stress (σi) 
 

• Using slurry PSD at each asperity land–
workpiece interface, slurry particles are 
loaded with a unique gap (gi) following 
load balance  
 

• Load/particle distribution is calculated 
from summing all pad asperities 
 
 

EHMG Model Setup 

T. Suratwala et. al., J. Am. Cer. Soc (2016) accepted 
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( )mmmppprrLAt adfadfVfffN
dt
dh 22 +≈

The EHMG polishing model is used to expand key parameters 
affecting material removal rate 

rop Vk
dt
dh σ=

Macroscopic Preston’s Equation 

Revised Microscopic Level Preston’s Equation 
from EHMG model 

Preston’s 
Constant 

Relative  
Velocity 

Applied  
Pressure 

Particle # 
Density  
(#/area) 

Fraction 
of pad 
area 
making 
contact 

Fraction 
of applied 
load on 
particles 

Fraction 
Active 
particles 

Plastic Removal Molecular Removal 

Fraction 
removal by 
molecular 
mechanism 

Removal  
depth 

Contact  
diameter 

Summation of 
removal for each 
particle either by 
molecular 
removal or by 
plastic removal 
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Combining all these measurements, a structural polishing model 
at particle-workpiece interface has been proposed 
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Both initiation load and multi-scratching at same location using 
AFM tip reveal insight to the fundamental removal function 
during ‘plastic’ type polishing 

Effect of multi-scratch on scratch 
depth at 110 µN on various glasses 

Determination of critical load for 
plastic deformation 
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Comparison of nanoscratching on different materials  
(function of # of passes & environment) 
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